736 research outputs found

    Capacitors can radiate - some consequences of the two-capacitor problem with radiation

    Full text link
    We fill a gap in the arguments of Boykin et al [American Journal of Physics, Vol 70 No. 4, pp 415-420 (2002)] by not invoking an electric current loop (i.e. magnetic dipole model) to account for the radiation energy loss, since an obvious corollary of their results is that the capacitors should radiate directly even if the connecting wires are shrunk to zero length. That this is so is shown here by a direct derivation of capacitor radiation using an oscillating electric dipole radiator model for the capacitors as well as the alternative less widely known magnetic 'charge' current loop representation for an electric dipole [see for example "Electromagnetic Waves" by S.A.Schlekunoff, van Nostrand (1948)]. Implications for Electromagnetic Compliance (EMC) issues as well as novel antenna designs further motivate the purpose of this paper.Comment: 5 Pages with No figure

    Regionalised impacts of climate change on flood flows: rationale for definition of climate change scenarios and sensitivity framework. Milestone report 2. Revised November 2009

    Get PDF
    The primary objective of FD2020 ‘Regionalising the impacts of climate change on flood flows’ was to assess the suitability of current FCDPAG3 guidance given the advances in climate change science since its publication. PAG3 requires an allowance of 20% to be added to peak flows for any period between 2025 and 2115 for any location across Britain. This guidance was considered a precautionary value and its derivation reflected the evidence available at that time. FD2020 has been designed to increase this evidence base, and it is anticipated that the research will lead to the development of regional, rather than national, guidelines for changes to peak flows due to climate change. A scenario-neutral approach based on a broad sensitivity analysis to determine catchment response to changes in climate as chosen for FD2020. The method separates the climate change that a catchment may be exposed to (the hazard) from the catchment response (change in peak flows) to changes in the climate (the vulnerability). By combining current understanding of climate change likelihood (the ‘hazard’) with the vulnerability of a given catchment, it is possible to evaluate the risk of flood flow changes. The vulnerability of a catchment is to be characterised in two steps: first, the response of a set of catchment’s to a range of climatic changes are modelled, then analysed for similarity, and characterised according to catchment properties. This is done by defining a sensitivity framework of changes to the mean and seasonality of precipitation and temperature and modelling the response of each catchment within this fixed framework. To properly understand the relationship between catchment properties, climate changes and changes in flood flows, it is essential that the considered scenarios capture the range of potential climatic changes expected to occur in Great Britain, including the large GCM (Global Climate Model) uncertainty. This means the vulnerability assessment (or the conclusions of the modelling exercise and regionalisation study) will be as robust as possible, and provide a sound science-base for subsequent policy guidance to the flood management community. This project report describes the rationale and the development of the climate change scenarios used in the project FD2020. The objective of this module of work was to develop a methodology to conceptualise how a catchment’s vulnerability (in terms of change in its flood regime under climate change) could be evaluated. This requires the identification of a range of climate change scenarios to be used in a comprehensive yet manageable evaluation of future river flood flows, which was guided by, but not limited to, current predictions of future climatic changes. This methodology is also designed to characterise the climatic change hazard, so that it can be compared with the catchments vulnerability to changes. Previous climate change studies relied only on projections from a few global (GCM) and regional climate models (RCMs), and thus could only capture a very limited part of the GCM uncertainty. The IPCC AR4 now provides data from 17 GCMs, all considered equally plausible representations of future climates

    Regionalised impacts of climate change on flood flows: regionalising the flood response types in Britain. Milestone report 4. Revised November 2009

    Get PDF
    The primary objective of this project is to assess the suitability of current FCDPAG3 guidance given the advances in climate change science since its publication. PAG3 requires an allowance of 20% to be added to peak flows for any period between 2025 and 2115 for any location across Britain. This guidance was considered a precautionary value and its derivation reflected the evidence available at that time. FD2020 has been designed to increase this evidence base, and it is anticipated that the research will lead to the development of regional, rather than national, guidelines for changes to peak flows due to climate change. A scenario-neutral approach based on a broad sensitivity analysis to determine catchment response to changes in climate as chosen for FD2020. The method separates the climate change that a catchment may be exposed to (the hazard) from the catchment response (change in peak flows) to changes in the climate (the vulnerability). By combining current understanding of climate change likelihood (the ‘hazard’) with the vulnerability of a given catchment, it is possible to evaluate the risk of flood flow changes. The vulnerability of a catchment is to be characterised in two steps: first, the response of a set of catchments to a range of climatic changes are modelled, then analysed for similarity, and second the main responses are characterised according to catchment properties. This is possible by defining a sensitivity framework of changes to the mean and seasonality of precipitation and temperature and modelling the response of each catchment within this fixed framework. This milestone report describes the second step of the vulnerability assessment. This is achieved by identifying the relationships identified between a catchment’s characteristics (geographic, geologic or climatic) and the vulnerability of its flood peak to changes in the climate. The work follows the identification of nine flood response types for catchments in Britain, after a comprehensive ‘scenario-neutral’ sensitivity study based on 4,200 patterns of changes in rainfall, temperature and potential evaporation. These nine flood response types were found to fully describe the range of changes in flood peak obtained in 154 catchments, and represent five main families of behaviour from the most ‘damping’ (low vulnerability), through ‘neutral’, to the most ‘enhancing’ (high vulnerability) catchments. One of the response types, with a very damped response to changes in climate, was removed from the analysis, as the group was too small for a reliable model to be built; leaving eight flood response types to characterise. Using a hierarchical partitioning technique and digital catchment descriptors from the Flood Estimation Handbook and the Hydrometric Register databases, decision trees were identified to discriminate the flood response type from nine descriptors including mean annual rainfall, area, northing and easting, elevation, and measures of permeability and catchment losses. At the 2-year return period level, all eight flood response types could be discriminated. For changes in the 20- and 50-year return period floods, the flood response types had to be merged into four main categories before they could be discriminated by the catchment characteristics. This merging was also necessary to ensure that uncertainty due to the impact of seasonality in rainfall change was fully incorporated into the flood response types. For the most enhancing catchments (i.e. where the changes in flood peak are proportionally much greater than the maximum increases in rainfall), the difference between the mean annual rainfall and the losses in the catchment was found to be an important discriminatory factor. For changes in higher return period floods, mean annual rainfall was found to be less critical. Wetter catchments were found to be in general less enhancing than drier catchments. The decision trees were successful for between 67.5% and 84% of the study catchments, depending on the flood indicator. Amongst the misclassified catchments, a larger proportion was misclassified as more enhancing, resulting in a potential over-estimation of changes in flood peaks, or an over-precautionary assessment. When evaluating the ability to discriminate between the more general families of ‘resilient/damping catchments’ (i.e. associated with a damped flood response type), ‘neutral catchments’ and ‘vulnerable/enhancing catchments’ (i.e. associated with an enhanced response type), 80% of the catchments were found to be correctly classified across all four flood indicators. Large catchments seem to be slightly more difficult to classify, suggesting they might not be well represented by single value descriptors which smooth out spatial variations important in the response of the river to climatic changes. Following the decision trees (sets of partitioning rules and paths for each of the flood response types), it is possible to quickly identify, for any catchment (gauged or ungauged but with available descriptors), the expected flood response type in response to climate change. This regionalised vulnerability assessment can be used in combination with an evaluation of potential climatic changes (or the hazard) to provide a measure of the risk of changes in flood peaks. In particular, this framework will enable a quick update of the potential risk of changes in peak floods when new climate change projections become available, such as for example the UKCP09 scenarios, without the need to undertake an extensive hydrological modelling and impact study

    Regionalisation of climate impacts on flood flows to support the development of climate change guidance for Flood Management

    Get PDF
    Current Defra / Environment Agency guidance (FCDPAG3 supplementary note: http://www.defra.gov.uk/environ/fcd/pubs/pagn/climatechangeupdate.pdf) requires all flood management plans to allow for climate change by incorporating, within a sensitivity analysis, an increase in river flows of up 20% over the next 50 years, and beyond. This guidance is the same for all of England and Wales, making no allowance for regional variation in climate change or catchment type. This reflects the lack of scientific evidence to resolve the spatial distribution of potential impacts on flood flows with enough confidence to set such policy regionally. The 20% allowance was first raised in 1999 for MAFF and subsequently reviewed following the release of the UKCIP02 scenarios. Although the 20% figure is a memorable precautionary target, there is the risk that it leads to a significant under- or over-estimation of future flood risk in individual catchments. Defra and the Environment Agency procured project FD2020 (Regionalisation of climate change impacts on flood flows) to provide a more rigorous science base for refreshing the FCDPAG3: supplementary note guidance. The FD2020 approach is exploring the relationships between catchment characteristics and climate change impacts on peak flows in a “scenario neutral” way. This is done by defining a regular set of changes in climate that encompass all the current knowledge from the new scenarios available from the IPCC Fourth Assessment Report. For each of the 155 catchments included in the research, this broad approach will provide multiple scenarios to produce a “vulnerability surface” for change in the metrics of peak flows (e.g. the 20-year flood flow). Some of the UKCP09 products have also been used to understand what these projections may mean for changes to peak flow. The catchment-based analysis will be used to generalise to other gauged sites across Britain, using relationships with catchment characteristics, providing the scientific evidence for the development of regional guidance on climate change allowances. Specifically the project is: Investigating the impact of climate change on peak river flows in over 150 catchments across Britain to assess the suitability of the FCDPAG3 20% climate change allowance. Investigating catchment response to climate change to identify potential similarities such that the FCDPAG3 nationwide allowance could be regionalised. Investigating the uncertainty in changes to future peak river flows from climate change. Developing an approach that has longevity beyond the project timeframe and the lifetime of the latest generation of climate model results

    Understanding the performance of water supply systems during mild to extreme droughts

    Get PDF
    This project assessed the performance of different types of public water supply systems in England and Wales in a range of droughts, including those that are more severe than the worst droughts in the historical record

    Using variograms to detect and attribute hydrological change

    Get PDF
    There have been many published studies aiming to identify temporal changes in river flow time series, most of which use monotonic trend tests such as the Mann–Kendall test. Although robust to both the distribution of the data and incomplete records, these tests have important limitations and provide no information as to whether a change in variability mirrors a change in magnitude. This study develops a new method for detecting periods of change in a river flow time series, using temporally shifting variograms (TSVs) based on applying variograms to moving windows in a time series and comparing these to the long-term average variogram, which characterises the temporal dependence structure in the river flow time series. Variogram properties in each moving window can also be related to potential meteorological drivers. The method is applied to 91 UK catchments which were chosen to have minimal anthropogenic influences and good quality data between 1980 and 2012 inclusive. Each of the four variogram parameters (range, sill and two measures of semi-variance) characterise different aspects of the river flow regime, and have a different relationship with the precipitation characteristics. Three variogram parameters (the sill and the two measures of semi-variance) are related to variability (either day-to-day or over the time series) and have the largest correlations with indicators describing the magnitude and variability of precipitation. The fourth (the range) is dependent on the relationship between the river flow on successive days and is most correlated with the length of wet and dry periods. Two prominent periods of change were identified: 1995–2001 and 2004–2012. The first period of change is attributed to an increase in the magnitude of rainfall whilst the second period is attributed to an increase in variability of the rainfall. The study demonstrates that variograms have considerable potential for application in the detection and attribution of temporal variability and change in hydrological systems

    Persistence of hydrometeorological droughts in the United Kingdom: a regional analysis of multi-season rainfall and river flow anomalies

    Get PDF
    This paper investigates the spatial and temporal properties of persistent meteorological and hydrological droughts in the UK at national to sub-regional scales. Using 1961–1990 as the reference period, it is shown that the longest observed run of below average rainfall since the 1870s persisted for four years in northern England and parts of Scotland during 1892–1896. The longest observed run of below average discharge since the 1950s/1960s was found for some groundwater fed rivers in the English lowlands and lasted up to 5.5 years during 1988–1993. Distributions of dry-spell lengths were represented by a Markov model fit to each rainfall and discharge record. This model provides a good fit to observed geometric distributions of spell lengths and provides credible runs of below average river flows lasting up to a decade in some vulnerable catchments in southern England. Droughts of this persistence may not yet have occurred within the instrumented record but could have profound water management implications for the region. Predicted 100-year drought durations for catchments in northern England may not be as long but could have serious ramifications for surface water supplies. These findings point to a risk of irreversible drought impacts on aquatic communities that are simultaneously stressed by unsustainable abstractions, poor water quality and/or habitat modifications

    Future hydrological extremes: the uncertainty from multiple global climate and global hydrological models

    Get PDF
    Projections of changes in the hydrological cycle from global hydrological models (GHMs) driven by global climate models (GCMs) are critical for understanding future occurrence of hydrological extremes. However, uncertainties remain large and need to be better assessed. In particular, recent studies have pointed to a considerable contribution of GHMs that can equal or outweigh the contribution of GCMs to uncertainty in hydrological projections. Using six GHMs and five GCMs from the ISI-MIP multi-model ensemble, this study aims: (i) to assess future changes in the frequency of both high and low flows at the global scale using control and future (RCP8.5) simulations by the 2080s, and (ii) to quantify, for both ends of the runoff spectrum, GCMs and GHMs contributions to uncertainty using a two-way ANOVA. Increases are found in high flows for northern latitudes and in low flows for several hotspots. Globally, the largest source of uncertainty is associated with GCMs, but GHMs are the greatest source in snow-dominated regions. More specifically, results vary depending on the runoff metric, the temporal (annual and seasonal) and regional scale of analysis. For instance, uncertainty contribution from GHMs is higher for low flows than it is for high flows, partly owing to the different processes driving the onset of the two phenomena (e.g. the more direct effect of the GCMs' precipitation variability on high flows). This study provides a comprehensive synthesis of where future hydrological extremes are projected to increase and where the ensemble spread is owed to either GCMs or GHMs. Finally, our results underline the need for improvements in modelling snowmelt and runoff processes to project future hydrological extremes and the importance of using multiple GCMs and GHMs to encompass the uncertainty range provided by these two sources

    Future hot-spots for hydro-hazards in Great Britain: a probabilistic assessment

    Get PDF
    In an increasing hydro-climatic risk context as a result of climate change, this work aims to identify future hydro-hazard hot-spots as a result of climate change across Great Britain. First, flood and drought hazards were defined and selected in a consistent and parallel approach with a threshold method. Then, a nation-wide systematic and robust statistical framework was developed to quantify changes in frequency, magnitude, and duration, and assess time of year for both droughts and floods, and the uncertainty associated with climate model projections. This approach was applied to a spatially coherent statistical database of daily river flows (Future Flows Hydrology) across Great Britain to assess changes between the baseline (1961–1990) and the 2080s (2069–2098). The results showed that hydro-hazard hot-spots are likely to develop along the western coast of England and Wales and across north-eastern Scotland, mainly during the winter (floods) and autumn (droughts) seasons, with a higher increase in drought hazard in terms of magnitude and duration. These results suggest a need for adapting water management policies in light of climate change impact, not only on the magnitude, but also on the timing of hydro-hazard events, and future policy should account for both extremes together, alongside their potential future evolution.</p

    Evaluation of changing surface water abstraction reliability for supplemental irrigation under climate change

    Get PDF
    In many temperate parts of the world, supplemental irrigation is crucial to assure both crop yield and quality. Climate change could increase the risks of irrigation being restricted by increasing crop water requirements and/or decreasing water availability. In England, water abstraction for irrigation is limited by maximum annual volumetric limits, as specified in the abstraction licences, and surface water abstraction restrictions imposed by the regulator during drought. This paper assesses how climate change might impact future irrigation abstraction reliability from surface water in England. Firstly, the probability of annual abstraction being close to the maximum licence limit was estimated for the baseline (1961–1990) and future (2071–2098) periods in each catchment based on observed relationships between annual weather and irrigation abstraction in three licence usage groups. Secondly, the current river discharge triggers for mandatory drought restrictions were used to assess the annual probability of surface water abstraction restrictions being imposed by the regulator in each period. Results indicate significant future increases in irrigated abstraction licence use due to an increase in aridity, particularly in the most productive agricultural areas located in eastern and southern England, assuming no adaptation. The annual probability of having less than 20% licence headroom in the highest usage group is projected to exceed 0.7 in 45% of the management units, mostly in the south and east. In contrast, irrigators in central and western England face an increased risk of drought restrictions due to the lower buffering capacity of groundwater on river flows, with the annual probability of mandatory drought restrictions reaching up to 0.3 in the future. Our results highlight the increasing abstraction reliability risks for irrigators due to climate change, and the need for the farming community and the regulator to adapt and collaborate to mitigate the associated impacts
    • 

    corecore